Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation.
نویسندگان
چکیده
The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.
منابع مشابه
The role of blood vessels in high-resolution volume conductor head modeling of EEG
Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotro...
متن کاملA discontinuous Galerkin Method for the EEG Forward Problem
In order to perform accurate electroencephalography (EEG) source reconstruction, i.e., to localize the sources underlying a measured EEG, the electric potential distribution at the electrodes generated by a dipolar current source in the brain has to be simulated, the so-called EEG forward problem. Therefore, it is necessary to apply numerical methods that are able to take the individual geometr...
متن کاملRealistic and Spherical Head Modeling for EEG Forward Problem Solution: A Comparative Cortex-Based Analysis
The accuracy of forward models for electroencephalography (EEG) partly depends on head tissues geometry and strongly affects the reliability of the source reconstruction process, but it is not yet clear which brain regions are more sensitive to the choice of different model geometry. In this paper we compare different spherical and realistic head modeling techniques in estimating EEG forward so...
متن کاملEfficient Computation of Lead Field Bases and Influence Matrix for the FEM-based EEG and MEG Inverse Problem
The inverse problem in EEG and MEG aims at reconstructing the underlying current distribution in the human brain. The finite element method, used for the forward problem, is able to realistically model tissue conductivity inhomogeneities and anisotropies. So far, the computational complexity is quite large when using the necessary high resolution finite element models. It is already known that ...
متن کاملA Discontinuous Galerkin Method to Solve the EEG Forward Problem Using the Subtraction Approach
In order to perform electroencephalography (EEG) source reconstruction, i.e., to localize the sources underlying a measured EEG, the electric potential distribution at the electrodes generated by a dipolar current source in the brain has to be simulated, which is the so-called EEG forward problem. To solve it accurately, it is necessary to apply numerical methods that are able to take the indiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 61 24 شماره
صفحات -
تاریخ انتشار 2016